为解决上述问题,中国药科大学徐克明、钟文英团队创新性地提出了一种火箭式微针递药系统,能够通过自推进机制实现药物的深层递送,在黑色素瘤联合治疗中表现出良好效果。该研究以题为“A Multifunctional Rocket-Like Microneedle System with Thrusters for Self-Promoted Deep Drug Penetration and Combination Treatment in Melanoma”的论文发表在最新一期《Advanced Functional Materials》上。
该研究设计了一种名为 PcNP/TRA-HA-Tyr/CLG-MN 的双层“火箭式微针”。微针(microneedle,MN)的上层由具有光动力活性的介孔二氧化硅纳米粒子组成,其特征在于共价键合光敏剂,并在介孔中负载曲美替尼(trametinib,TRA),这是一种针对黑色素瘤细胞过度激活 MEK 通路的靶向小分子药物。微针的下层由酶交联透明质酸-酪胺(HA-Tyr)水凝胶和胶原酶(collagenase,CLG)组成,可以充当火箭助推器,通过重塑肿瘤组织的细胞外基质(extracellular matrix,ECM)促进纳米颗粒的深层穿透。在制备的三种MN中,PcNP/TRA-HA-Tyr(II)/CLG-MN在肿瘤组织的渗透最深,在体内的保留时间最长。在PcNP/TRA-HA-Tyr(II)/CLG-MN给药后进行光动力治疗能够显著抑制小鼠A375移植瘤的生长。总之,将介孔二氧化硅纳米颗粒、酶交联水凝胶和CLG介导的ECM重塑相结合的“一石三鸟”策略能够提高药物的深层穿透和联合疗法的抗肿瘤功效,在纳米医学领域展现出较好的应用潜力。
图1 火箭式微针的设计与应用
在这一研究中,微针的上层设计可以实现:(1)二氧化硅和光敏剂的共价连接实现了光敏剂的大量负载,同时防止聚集引起的猝灭;(2)多孔纳米结构促进TRA的负载,靶向抑制黑色素瘤细胞增殖;(3)光动力疗法与靶向药物相结合,有效提高对黑色素瘤的治疗效果。微针的下层设计可以实现:(1)利用酶交联HA-Tyr水凝胶作为基质,可控调节微针的机械强度和透皮效率;(2)嵌入水凝胶的CLG作为一个强大的助推器,有效重塑肿瘤微环境中致密的ECM,促进PcNP/TRA在实体瘤的深层穿透。
图2 双层微针的形态学表征
当“火箭式微针”穿透皮肤表皮时,MN的上层和下层发生分离。MN的下层在皮下膨胀形成水凝胶,调节CLG的释放,从而重塑致密的ECM,促进药物的扩散和分布。同时,MN上层的介孔二氧化硅纳米颗粒(PcNP/TRA)深入肿瘤内部并被黑色素瘤细胞内吞。一方面,TRA靶向黑色素瘤细胞过度激活的MEK通路,降低ERK激酶磷酸化水平。另一方面,Pc-Si响应外部红外光刺激,产生活性氧自由基,实现黑色素瘤的PDT治疗。最终,靶向疗法和PDT疗法共同发挥作用,高效杀伤肿瘤细胞,抑制黑色素瘤生长。
图3 PcNP/TRA-HA-Tyr/CLG-MN的体内皮肤穿透效率评价
图4 PcNP/TRA-HA-Tyr(II)/CLG-MN的体内抗肿瘤效果评价
综上,作者采用“一石三鸟”策略设计了一种多功能“火箭式微针”递药系统,通过整合微针的穿透和CLG的助推器功能,促进药物在肿瘤组织的深度渗透。CLG助推器采用了一种类似火箭喷射的机制,能够在微针插入皮肤后自发启动,进一步推动纳米药物向深层组织渗透。这一设计不仅能提高药物的穿透深度,还能确保药物在肿瘤部位的有效浓度。该研究为药物深度穿透和黑色素瘤联合治疗提供了新途径,为微针技术在重要疾病治疗中的应用提供了新思路。
--检测服务--