氧化镍(NiOx)由于其较低的成本、更高的透光率和优越的稳定性在反式钙钛矿太阳能电池中广泛使用。然而,NiOx与钙钛矿层存在接触不良的问题,这不仅阻碍了界面上有效的电荷转移,而且还限制了钙钛矿晶体的生长,最终导致器件性能不佳。自组装单分子层(SAMs)被认为是改善NiOx器件界面的有效方法,但SAMs的端基存在不能有效钝化钙钛矿材料底面缺陷的问题。 近日西北工业大学李炫华教授团队提出在NiOx/Me-4PACz与钙钛矿层之间引入对亚苯基二磷酸(p-XPA)界面层,优化了空穴传输层表面平整度,改善界面接触,抑制钙钛矿底面缺陷,提升了反式器件的效率和稳定性。
Figure 1. Effect of p-XPA on surface morphology and electrical properties of HTL. (a) The schematic diagram of the fabrication process of the buried interfacial modification strategy, as well as the microstructure arrangement of p-XPA and Me-4PACz on the NiOx surface. The AFM images of (b) control and (c) target, respectively. (d, e) KPFM images of the control and target, respectively. The conductivity (f) and the hole mobility (g) of control and target films. 引入p-XPA后,NiOx/Me-4PACz的表面粗糙度明显降低,说明其表面更加平整,有利于钙钛矿晶粒生长,提升钙钛矿薄膜质量。此外,NiOx/Me-4PACz薄膜的表面电势显著降低,并且其电导率以及空穴迁移率升高,表明载流子在钙钛矿层与空穴传输层之间传输势垒减小,加快界面载流子传输,抑制界面非辐射复合。 Figure 2. Optoelectronic performance. (a) Schematic diagram of the inverted device and interaction between p-XPA and perovskite film. (b, c) The forward and reverse sweep J-V for the control and target. (d) EQE of the control and target. (e) The SPO of the control and target. (f) Energy diagram for NiOx/Me-4PACz and NiOx/Me-4PACz/p-XPA compared with perovskite. (g) Light intensity dependence of VOC. (h) Mott-Schottky plots. 最终,经过p-XPA修饰的器件的效率达到25.87%(认证为25.45%)。未封装的修饰器件具有良好的热稳定性,在85℃和氮气保护环境下老化33天后保持80.3±1.8%的初始效率。封装的修饰器件也具有更好的操作稳定性,并在1100小时的最大功率点监测下保持其初始效率的82.7%。 论文信息 Enhancing Hole Transport Uniformity for Efficient Inverted Perovskite Solar Cells through Optimizing Buried Interface Contacts and Suppressing Interface Recombination Xilai He, Hui Chen, Jiabao Yang, Tong Wang, Xingyu Pu, Guangpeng Feng, Shiyao Jia, Yijun Bai, Zihao Zhou, Qi Cao, Xuanhua Li Angewandte Chemie International Edition DOI: 10.1002/anie.202412601